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XVII. The Complete System of the Periods of a Hollow Vortex Ring.
By H. C. PockringroN, B.A4., Fellow of St. John's College, Cambridge.

Communicated by JosePH LARMOR, F.R.S.
Received April 23,—Read May 16, 1895.

1. AccorpING to the vortex theory of matter, atoms consist of vortex rings in an
infinite perfect liquid, the sether. These rings may be either hollow or filled with
rotating liquid. The cross section of the hollow or rotating core is in the simplest
case small and the ring is circular. Such vortices have been investigated. It has been
shown that they can exist, and that they are stable for certain types of deformation.
In this paper the stability of the hollow vortex ring is investigated further, with a
view to proving that it is stable for all small deformations of its surface. An attempt
is also made to make the vortex theory of matter agree with the kinetic theory of
gases as regards the relation between the velocity and the energy of an atom. On
the latter theory the energy of an atom varies as the square of its velocity, while on
the former theory the energy decreases as the velocity increases. As the two theories
differ on a fundamental point, while the consequences of the kinetic theory agree over
a wide range with experiment, those of the vortex theory are likely to be in
discrepancy therewith. However, no account has been taken of the electric change
which an atom must hold if" electrolysis is to be explained. This electrification will
evidently alter the relation between the energy and the velocity. The nature of the
change thus produced is here discussed for the case of a hollow vortex, the surface of
which behaves as a conductor of electricity, a representation which is dynamically
realised by the theory of a rotationally-elastic fluid ether developed in Mr. LARMOR'S
paper,® “ A Dynamical Theory of the Electric and Luminiferous Medium.” The small
oscillations also are worked out with a view to the discussion of the stability of an
electrified vortex.

2. The velocity of translation of the vortex in its steady motion is constant and
perpendicular to its plane. By impressing on the whole liquid a velocity equal and
opposite to this, the hollow is reduced to rest. Since the cross section of the hollow

(is small, any small length of it may be regarded as cylindrical. A cylindrical vortex
must, by reason of symmetry, have its cross section a circle, so that the cross section

* J. LARMOR, ¢ Phil. Trans.,” 1894, A, p. 719.
MDCCCXCV.—A. 41 14.10.95
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604 MR. H. C. POCKLINGTON ON THE COMPLETE SYSTEM

of the hollow of the annular vortex is approximately circular, and the hollow itself
approximately a tore.

3. The motion of the fluid is referred to the toroidal coordinates u, v, w, where u, v
are given in terms of the cylindrical coordinates =, 2z, by the equation

u+cv:10gwitz+& e ¢ 5 )

w+w—a

and w is the angular cylindrical coordinate.

The constant « and the position of the axes are so chosen that the hollow is
approximately given by u = const.

On solving (1) for z 4 v, and equating real and imaginary parts,

sinh « S

T =0 S=q .;......(2),

coshw —cosv  C—c¢
sin v s
p=m T o g 3),
cosh u — cos v C —c

where € ¢, 3, s are written for cosh u, cos v, sinh u, sin v respectively.
The square root of the Jacobian of u, v with respect to =, 2 is £ where

£ — 1 __ (cosh w — cos »)*
- dﬁf\z dm’ 2 ‘ @2 ’
<(lu ) + (\dv )

or,

If & be put for e~ k is small near the surface of the hollow, and the values of

w, 2, € are
& = (1 - 2k cos v)
|
z = 2ak sin v '
1 — 2k cos v
g=lmZemr
2ka J

in which expression the squares and higher powers of k have been neglected.

4. The motion of the liquid, being symmetrical about the axis of the ring, may be
expressed in terms of Stokus’ current function . Now i consists of two terms.
Oue is — §V=?, corresponding to a uniform motion of the liquid with velocity V. The
other vanishes at an infinite distance from the ring and, therefore, can be expressed
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OF THE PERIODS OF A HOLLOW VORTEX RING. 605

in the form* {2 (C — ¢)}*2A,R, cos nv, where R, = S -—7 and P, is that toroidal

function of order 7, which is finite when u = 0.

Thus,
Y= — %ZVm-2+"»-~::_~—~ SAR,cosmv . . . . . L (5)

The first term under the sign 3 corresponds to a circulation about the critical circle
k= 0. The succeeding terms correspond partly to the disturbance of this circulation
by the free surface, and partly to the disturbance of the uniform flow ¢ = —3V=® by
the same surface. Now since the annulus is nearly coincident with a flow surface of
the circulation, and since V, as is easily seen from elementary considerations, is small,
these terms are small. Their products by small quantities may therefore be neglected.

Hence, expanding by (4),

Y= — 3Va® (1 + 4k cos v) + (1 + kcosv) k* {AR, + A R cos v 4 ete}. (6).

Since k = b 1s a flow surface, ¥y = const. when £ = b, or
const. = AR/ bt — LVa? + (A R0} + AR 0} — 2V D) cosv 4+ A R/, cos 20 + ete.,

‘where R’; means the value of R, when £ is put equal to b.
Hence, equating to zero the coefficients of cos », cos 20, ete.,

2Vt — A, R’
A,=Ag=0, A =R

AlsoT
RO = (%I‘ - 1) k—%‘ Rl - %k"%v‘

where L = log 4/k, whence, substituting,
A, = 4Va® + (L' — 2) D™
Substituting the value of A, in (6),

L—2 [ 2Va?h®

— oV 4+ A, 20— A, ——~/cl cosv (7).

The fluid circulation is the line integral of the velocity taken along any curve

* W. M. Hicks, ¢ Phil. Trans.,” 1884.
+ W. M. Hicks, ¢ Phil. Trans.,” 1884, p. 172.

41 2
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606 MR. H. ¢. POCKLINGTON ON THE COMPLETE SYSTEM

enclosing the hollow.  Taking the curve to be £ = b, and putting for the velocity its
,’5 ‘l’

value AL have

circulation = p =

f" dv & dp J%dv C—cosv, dy

o £ ®w du 0 S
. o C— cos v ’ o , o\ A, )
= — L dv G b \LZZ - {4‘7(0 + A (L~ 2) — P } oS ’UJ
= — 7A,/a,
neglecting quantities of the second order.
Hence
Ay= —pa/m . . . . . . . . . . (8).

5. The motion of the liquid is now completely expressed in terms of p and V by
(7) and (8). We proceed to find the energy of the fluid motion and, with the object
of writing down the condition that is satisfied at the free surface, the pressure of the
liquid at the surface.

If ' is the current function that gives the motion of the liquid when the reverzed
velocity V is not impressed on the liquid, so that ¢ = §V&® 4 s, the encrgy of the
actual motion is

5p H 2ares des dz : {<(fltl>2 + <@%>2}
= mp s B0 — (Jawasw{ (L) + L ]

by integration by parts, where, in the double integrals, = and 2 are to take all values
corresponding to space occupied by the liquid, and in the single integral, ds is an
element of length of the cross-section of the boundary, dn the element of normal to
the boundary, taken as positive when drawn from the liquid, and the -integral is
taken round the cross-section of the boundary. The double integral in the latter
expression vanishes by the equation satisfied by ¢ in an irrotational motion, and thus

energy = mp j’ds v r” g fd_\!r"

& dn Pl £ o > du’
- : Ay
= —wp[ dob " 22--0'983{$—(2V002+A0( ——2)-—~~— )C()b v}

{ Ay -—»~‘~‘— + 2Va®h cos 'v}

— WpA(, (L L Z)

Za .lzp(‘[pv (I - 2) . . . . . - . . . . . . (9_),

by (8).
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Of THE PERIODS OF A HOLLOW VORTEX RING. 607
If the pressure at any point of the liquid is I, and at infinity is I,

H = Hoo hd ’%’ngy
where ¢ is the resultant velocity.
The components of the velocity perpendicular to the surfaces v = const. and

d d . {
u = const. are - ¥ , £ =" respectively. But N — 0 on the flow surface & = b.
5 du’ w dv . dv

Hence
o B[\ _(C—0)f Jx A \?
T = du) T oS dk |’
1 —8kecosv[ A 2V a?h? I/ — 2) 2 L—-2 A 2
e e R R TR A I T

or, putting k = b,

A2 4Va?
9 — 70 . AN [
q° = 160 {1 40 <L ) A, >C‘OS v},

w {1 — 4b <L' -1 - 4qu> cos 7)},
M

T 167%a%* y

28|

and thus
. _ _/fﬁ [ _ F 47 Va }
=1 — - <l1 4b <L 4 L )OS ... (10).
The pressure is zero at the free surface, so that

KP_ _ dmVa

S L
302 T ’ M L s
or
V= Vlo 167 \/(211.,) B L\
drat p/p 305

and thus V diminishes with increase of a.
6. To find the small oscillations we assume that the equation to the surface of the
hollow when it vibrates is at time ¢

k=01 4 Bettrtm oy L (11),

where «+ = /(— 1) and m and n are positive integers, 8 being small. We then
determine the corresponding disturbed motion of the liquid, and finally write down
the condition that the pressure at the surface of the liquid is zero. If the resulting
equation can be satisfied by any value of p, the assumption as to the form of the
disturbed surface is justified, and 27/p is the period of the oscillation. The displace-
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608 MR. H. C. POCKLINGTON ON THE COMPLETE SYSTEM

ment. of the surface.given by (11) is complex. Noting, however, that the signs of
v and of w may be changed, other possible equations to the surface are seen to be

k=0{1+4 Bel=m+m=piy,
k =) {1 + B@‘('w_”“”"'ﬂ)}’
F= b (L 4 Bertmmme-my,

in which equations p has the same value as it has in (11), and is here supposed to be
real. The displacements, being small, may be added and subtracted, so that

k=1b{l 4+ Bsin (nv + pt) sin mw},wl

k="0{l 4+ Bsin (nv + pt) cos mw}, L 19
k=014 Bcos (nv+ pt) sin mw}, i ce e 9)
k=1">{1+ Bcos (nv+ pt) cosmw},JI

are possible equations for the surface of the hollow at time . These equations no
longer contain imaginaries, and thus they correspond to real oscillations.  If m is zero,
the disturbauce of the surface is symmetrical about the axis of the vortex, and consists
of trains of waves, the crests of which are circles parallel to the critical circle, pro-
oressing round the hollow. These vibrations will be called the fluted vibrations of
the vortex. If n is zero, the disturbance consists of alternate swellings and contrac-
tions of the hollow disposed at equal intervals along its length. These vibrations
will be called the beaded vibrations of the vortex. As given by (12) they are standing
waves. On adding or subtracting the disturbances given by the first and last or the
second and third of these equations, beaded vibrations are obtained which progress
along the length of the hollow. If both m and n are zero, the disturbance consists of
a uniform periodic enlargement of the vortex. This vibration will be called the
pulsation of the vortex. If n is unity, the disturbance consists of a displacement of
the axis of the hollow, without alteration of its cross section. These vibrations will
be called the sinuous vibrations of the vortex.

7. The motion of the liquid is that which subsists when there is no vibration,
together with small terms introduced by the vibration. The former has already
been expressed in terms of a stream function  given by (7). Let the corresponding
velocity potential be ¢,. The terms due to the vibration must have an acyclic
velocity potential. Let this potential be ¢, Since ¢, vanishes at infinity it can
be expressed in a series of the form™ Dy QT@ —c) P, etwtrt) where ,P,
is the associated toroidal function of order » and rank m, so that

* W. M. Hicks, ¢ Phil. Trans,,” 1881.
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OF THE PERIODS OF A HOLLOW VORTEX RING. ’ 609
" cos mbB do
mPn: fo(c_scose)(zn,‘_l)/g. . . N . . . . (13).

We shall assume, our assumption to be justified by the result, that ¢, reduces to

the single term D v/2 (C — ¢) ,P, e?@+m+r) Since D is small, we may neglect all
but the lowest powers of & in this expression, and thus

mPﬂ-
¢2=D‘\/—ke°("”+mw+pt) P e e e e e (14).

The value of D must now be found from the condition that the velocity of the
free surface normal to itself is equal to the velocity of the liquid normal to the
surface. The velocity of the surface normal to itself is

L Lodk
E dt gk dt
= 2pabBe termtp) . . . (15)

from (11).
The components of the velocity due to ¢ are ;

perpendicular to % = const.,

d ;
£ 0 to our order ;
= dv
perpendicular to v = const.,
£
= du
1—4kcosv, [A, . [A, L—2 L'=2 o  2Va’?
T 2% k{zk ( g ~ho ATy p Ve =T "OS”}’

> (16).
or at the surface given by (11),

1 — 4bcosw ég é_()_ o (v + mav + pt) A_Q . p 2\
"w_z‘;;é—{zb — o Be + (5 — A (L—2) 4Voo)cosv

-

— e —_— v(no+mw+pt) T,/ — 1 4:'7TVCL) } ;
4'”“6{1 Be 2b<L -3 P ek

perpendicular to w = const.,

0 " -

The velocities here, as elsewhere, are considered to be positive if measured in the
direction of increase of k, v, w.
The components of velocity given by ¢, are ;
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610 MR. H. C. POCKLINGTON ON THE COMPLETE SYSTEM
perpendicular to w = const., A
—_— f% — P d mPu ,> c(nv+mw+ﬁ/)
du 2o N2
perpendicular te v = const.,
f dd)Q —_ @ ”‘P et maw+pl) r Y (17)
dv ~ 2ab \/ b ’
perpendicular to w = const.,
lﬁl(_ﬁ? l'mP ..1’?,1_)_, e L(w +mw+ pt)
w dw a /b ’
The direction cosines of the normal to the surface are
1, — wmBeltwtmte  — QumBetwtmotp) . (18).

Hence the velocity of the liquid normal to the surface is, from (16}, (17), (18),

T L?’lIB(/ (nw + mw + pl) +

D d [P/
4 ab

) et (et -+ pt)
2a, db ’

V0

neglecting terms small compared with those retained.
This is equal to the velocity of the surface normal to itself, so that {rom (15),

I) i / ’))llll
S db \ /b

ad 7 L?’?/,B@L (v + maw + pt) + ) e (v + e + pl) e QJ’Z)C!Z}LB(&L (v + maw +pl)’
a

which gives

(19).

Substituting from this result and (16) and (17), the compouents of the velocity of
the liquid at the surface of the hollow become ;
perpendicular to v = const.,

1
ab

<M% + Zpa262> LB@ (v + maw ip/)

perpendicular to v = const.,

' NN
cos ?)} . _’L_iz_ </‘m’ + 2200&2172) Be (nv + mw+p/)

M {1 — Bet(fw+mw+pz‘) — 2b <L’ — le —

Amab
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OF THE PERIODS OF A HOLLOW VORTEX RING. 611

perpendicular to w = const.,
_ A [ 272\ g3 -
a <47r+2pab>'8’
where
mPn,/ \/ b
A= b g mPn/ . . . re e . e (20).
Vb

The equation giving the pressure is
d
II = I - g — p T ($1 + ).

Since ¢, is independent of ¢, on substituting from (14) and (19), and equating the
pressure to zero,

2
0=10 = I, — _~P {1-45(11-%—

47Va
397 2a2h° )

y’s

27.9
_ 2(] T+ o\ 87ra,bn?\p)

Be t(n + maw + pt) } + p)\Z)< + 4}7a2b2> l@eb (nv + mw + pt) (2 1 )

In this equation the terms not involving the exponential cancel by the equations
defining the steady motion. The equation can therefore be satisfied by some value of
p» which fact justifies the original assumption as to the nature of the disturbance of
the surface. On dividing by Be‘(®+m+#) we find as equation for p,

+ php ( +4r0&9b)—0,

wp 5 87ral? nhp
167220 <1 T

or

p2+2_2072 2b2+<22+ 1>(8 Z%o)z:O P (22).

8. It now remains to find the value of A, deﬁned by (20).
Now

P J" cos mB do
Ly = O(O S cos 9)(2n+1)/2 ?

or, expressing in terms of % and remembering that £ is small,

@n+1)2 cos m@ do
(2k) ,‘.0 {1 — cos 0+ 72 (1 + cos 6)}(2n+1)/2 »

dg cos mbB do
— Mlc)@ﬂﬂ)ﬂ[(WZ-l-(Zk)@n +1)/2J' (l-—(ms*—-_tm oo (23>,

where ¢ is small absolutely, but yet large compared with % If n is not zero, the
MDCCCXCV.—A. 4 K
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612 MR. H. C. POCKLINGTON ON THE COMPLETE SYSTEM

latter integral can be neglected in comparison with the former, and the limits of the
former can be taken to be 0 and o, so that

o ® dag
WPy = (48) ¢ “’/2,{0 (6 + 4p)Er e
Now
ne1 -—d—— n—1
{w——L _ (— ]‘) < da > J’w dao
Jo(@ + ) 0™ g o 2n—1 1g(6* + o)
2enee g
d >n—1 L9 ”
o« [ v
do 20 + a 0
1
an

Hence, in the case where n is not zero, ,P, varies as £ ~@*~D”2 when & is small,
so that

If n is zero, from (23)
S0 do y 7 cos mf df
nPo = (4k)-[0 vV Al + L sin (0/2)
— (4} loo = Moo £ _ ga (Lo cosmb
= (4k)! log -+ 2k log - k ), @) do.
Calling the last integral v, we have
™ . 2m+1 4
Yur1 = Ym = 2 L) d0 S ”“’”’2‘ *** 9 == 5}7‘?}1“1 .
Also v, = 0, therefore
{ 1
— 141 I : ‘
'ym-—4(l—|—3+5—|—... 2m_1> Coe (25,
and
P, = 2k log = — &
wk g =— g 7 Y
giving
A=— L =%y, . . . . . . . . . (206)

9. In the preceding paragraph, cos m@ was put equal to unity in the integrals
taken from 0 to e. If m is so large that me is finite, this step is no longer valid. In
this case, however, the second integral of (23) vanishes in comparison with the first,
and the upper limit of the first may be taken to be infinity, so that
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OF THE PERIODS OF A HOLLOW VORTEX RING. 613

: ®  cosnfdl 9 ® cos 2my dy
S (4/6) (Rat1)/2 _{0 @+ 4]172)(27»“}/2 = }71:(2”"”/2[0 1+ Xg)(2n+1)/2’

and

wPa 2 (% cos2my dy
Jo (1 + x») e’

a BEesseL’s function of the second kind of order » with imaginary argument.
Denoting this function by the symbol K,,

A A

mPn

\//k &« K?_L (2 77?]6), A= — K, (2777,17)

L 27).
2mbK, (2mb) * ( 7)

10. Substituting in (22) the value of N\ given by (24), (26), (27), we have as
equations for p,
if m is finite and n not zero,

, ?
p2+2pn§-7-r%%+n(n—1)(é—7;‘;2—b2>=o Coe e (28);

OF

if m 1s finite and » zero,

1 / /.L 2 .
2 — .
P= ol (8#&2292) e e e {(29);

if m is great, whatever n may be,

9 1 9 4 2mbK,)/ (Zmb_) o \? _
P2 st {” Tk, @ty [ \Graw) =0 - - - (30)

The first of these equations agrees, in the case of m = 0, 7.c., in the case of fluted
vibrations, with that obtained by Mr. Basser,* and the second, in the case of m = 0,
%.., in the case of pulsations, with that obtained by Mr. Hicks.t The first of these
equations evidently gives in all cases real values of p. The second also does so, for
L’ is large and vy, finite. The third also gives real values of p, for, by a property of
the function K,, easily proved from its definition as a definite integral, K, is positive
and its differential coefficient negative for real positive values of its argument.
Hence all the values of p are real. One, however, given by the first of these
equations when n =1, is zero. This shows that the corresponding value of p is not,
as are the other values of p, of the second order of large quantities, but of some lower
order. These equations, then, show that the hollow vortex is stable for all displace-
ments of its surface, with the possible exception of such as involve sinuous vibrations of
the slow type. These latter vibrations have been investigated by Professor THOMSON,]

A

SOCIETY

* A. B. Basser, ¢ Hydrodynamics,” vol. 2, p. 92.

+ W. M. Hicks, ¢ Phil, Trans.,” 1884,

1 J. J. THomsoN, ¢ Phil. Trans.,’ 1882, and * Motion of Vortex Rings,” Part I
4K 2

OF
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614 MR. H. C. POCKLINGTON ON THE COMPLETE SYSTEM

who proves that the vortex is stable for sinuous displacements, and finds the periods
of the sinuous vibrations. ,

11. The electrified vortex. If the vortex carries a charge of electricity on its
surface, the surface condition is altered. The effect of the electricity is to cause a
tension to act on the surface which at any point is F?/8# per unit area, where F is the
electric force. This tension must be balanced by the pressure of the liquid. Hence

the surface condition is
O=F8 . . . . . . . . . . (31).

The electric state of the system is defined by the electric potential ¢. Since ¢
vanishes at infinity, and is an even function of v, its expansion in a series of toroidal
harmonics must be*

¢p=+2(C —c)2B,P,cosnv . . . . . . . (32)

The first term in the series is the potential, due to a uniform line distribution on
the critical circle & = 0. If there were exact; coincidence between the surface of the
hollow and some equipotential of this distribution, the terms after the first would
vanish. As an approximate coincidence subsists, these terms will be small, and their
products by small quantities may be neglected.

Expanding (32),

¢ = ByPok~t + (BA™P, — Byk'Py) cos v 4 ByPok™ cos 20 + &e. . (33).
Putting &£ = b, ¢ is equal to the constant potential ¢, of the vortex,
¢, = B,P,/ bt + (Bp™iPy — BybiPy') cos v + BPyb cos 2 + &e.,

so that _ .,
¢ == B,Pyb~%, By =B, %
B,=B;=...=0.
Also,t as
P, = 2Lk, P, =2k},

to our order, we have
I
n-d Bela
Substituting these values in (33),

L 0 L
b=d; + ok <];2~ - f") Cos V.

* W, M. Hicxs, ¢ Phil. Trans.,’” 1881, p. 618.
+ W. M. Hicks, ¢ Phil. Trans.,” 1884, p. 171.
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OF THE PERIODS OF A HOLLOW VORTEX RING. 615

The force normal to w = const. is thus

dp 1 —2kcosw 1 5 1 L
— k= k{(ﬁo@'i'%(ﬁ"f-i-f)cosv}

= % 14k ﬁL’+T—3 cos v »
T 20kl i -

As the force normal to v = const. vanishes on the equipotential k= b, the resultant
force F is the value when £ = b of the above,

F=2£’L,{1+b(2L’—3)cosv} Coe e (84).

The charge on the vortex is

o dy F
E-—fo §271m47r,

21rd ’
= jo 1 bot (1 + 4k cos v) {1+ b (2L — 3) cos v},

— T
- | P
or,
L/
470 - 77'_62 E;
so that, substituting in (84),
E , )
F=27m2b{1 +b(2L — 8)cosvt . . . . . . (35).
The electric energy is
L/
%%E:zquz- N 61 8

12. We are now in a position to write down the equation giving the steady motion
of an electrified vortex. Equating the value of II, given by (10), to that of F?/8m,
given by (85), we have

2
_E%@ {14 2b(2L" — 3)cosv} = Il ——’Uip—{l -~ 4b<L' —%—47/7&) cosv},

32w 327a*H?

which gives, on equating separately the terms involving v and those independent of v,

E? 4 mpap? = 824%%°0. . . . . . . . . (37),
P— i. /o1 B2 1 __ 3
V= 4ra, {L T2 mpatud (L 2)} B :1:))
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616 MR. H. C. POCKLINGTON ON THE COMPLETE SYSTEM

The energy of the vortex is the sum of three terms. The first is the energy of the
electricity, foundin (36). The second is the kinetic energy of the liquid, found in (9).
The third is the potential energy due to the presence of the hollow. Since the
hollow could, if the liquid were brought to rest and the electricity removed, be filled
by liquid flowing into it at pressure II., the last term is the product of II. and
the volume of the hollow. Now, from (4), if % is small we have

(w — a)® + 2* = 40’
so that the radius of the cross-section of the ring is 2ab, and the distance of the

centre of the cross-section from the centre of the ring is ¢. Thus the volume of
the hollow is 87°a®0®, and the total energy on substituting for II. from (37) is

L’ . T2 + .n.pa?,,u?
— 1 2 ln € 2 R'2 28K . LT
U= ZPU (L 2) + 27raE + 87a’ 3273 ath?
£ ’ pap® o, : .
= U+ +25 =8 L @)

Equations (37), (38), (39) give all desired information about the steady motion of
an electrified vortex. The first effect of electrification is to diminish the velocity
of the vortex, If E?/mpa®p® = (L' — &) /(L' — %), V vanishes, while for values of E
greater than that given by this equation, V is negative and the vortex moves back-
wards. This state of rest of the vortex may evidently be obtained as well by
decreasing « as by increasing E. Hence an electrified vortex ring, however small
the charge may be, will be reduced to rest if its radius is reduced sufficiently, and if
its radius is further reduced, will move backwards, .c., in a direction opposed to that
of the motion of the fluid at the centre of the ring.

Since
E2

2ara?

aU
da

2
=L = ) = 5o (L = §) = 2wV,

the energy of the vortex is least when its radius is such that it is stationary. If a
is nearly equal to this value the difference between a constant and the energy of the
vortex varies as the square of the velocity. This relation is only approximate and
does not hold if « differs much from the value that makes V = 0. If ais so large
that E? can be neglected in comparison with mpau?,

U= fpap® (L' = 3), V=p(L' —{)/dna,

and as L may, if  is very small, be considered a large constant, Uec 1/V in this case.
If, however, « is so small that wpa®u?® can be neglected in comparison with E?,


http://rsta.royalsocietypublishing.org/

A

a
-
I
y G \\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

OF THE PERIODS OF A HOLLOW VORTEX RING. 617
U=E(L =+ })2na, V=E (I — $)/4rpain

numerically, and hence U &/ V. Tt seems, therefore, that the vortex theory of matter
is not much improved in respect of the relations between the velocity and the energy
by taking account of the atomic charge, unless the atom is supposed always to have
nearly the radius corresponding to minimum energy.

[An electric charge can, of course, have no direct action on the velocity of the
vortex. The manner of its action may be illustrated by considering what happens
when a vortex ring is suddenly charged. The charge will produce two distinct
effects. It will increase the cross-section of the hollow, and also its aperture. The
former effect has no further consequences, but the motion of the fluid involved in the
latter effect causes the velocity of the fluid at the front of the hollow to decrease, and
that at the rear to increase. This causes an increase of pressure in front and a
decrease behind, and so causes the ring to go more slowly.—15th August, 1895.]

[It may be desirable to point out that the alteration in the relation between the
energy and the aperture of the ring, which is caused by an electric charge, takes
place only in the potential part of that energy. The kinetic energy of the fluid is
unaltered (to our order of approximation) by the electric charge.-——August 29, 1895.]

18. In order to discuss the stability of an electrified vortex, the periods of the small
oscillations must be found. For this purpose we must find the surface value of the
electric force when the surface of the vortex is given by (11). The electric potential ¢
is now the sum of two terms. The first is the value that it has in the steady motion.
The second we shall assume to be of the form

G .'f‘_l_)ﬁ o (vt tpt)
7 H

Vi

so that _

L b L mP" ¢ (n+mw
¢ = qﬁoi,—-l-lc(—k; —L,vv) ¢, cos v +- Gﬁ erlmrmwtpl) . (40).

When
k=10 {1 ___l_ Bez(m;+mw+pf)}

this is to be constant. Hence

¢0 (e mao+pt mPn,
t. — 0 Rt ) | 122 o (wwtmwtpt)

giving
1 — b0 nl
G=1, oo B
Equation (40) now gives
— g2
F =&k dk
1 — 2bcosv

e 9&0_ _1_ g _1_\) é@ ¢ (nv+mw-+pt)
= o b{L’ p T b (2= ) cosw — e

’
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618 MR. H. C. POCKLINGTON ON THE COMPLETE SYSTEM

The total electric charge is the surface integral of I'/4.

The terms involving the exponential will evidently vanish on integration, except in
the case when m and n are both zero, ue., except in the case of pulsations.

Hence, excluding pulsations, E has the same value as before, and

E

' 1 L (YT mw
F= 97 a’h {1 4 b (2L" — 8) cos v — <1 + 7)/8@( + W)}.

The surface condition. given by (81) and (21), is

E2 P ’ 1 v (nv+mw
Mo = g {1 4 25 (2L — 8) cos v — 2<1 + -'X>Be( etz
_ I 2P T [ 4ZTY.[(' — 4 2 §Zr£[f@£ ¢ (no+mw+pt)
-4 327r2a2b2{1 4b<L & p cos v 2&1 + 7\ 4+ p Be » }
— php </2i;: + 4]001%2) Bertwrmutpl) Lo (41).

In this equation the terms not involving the exponential cancel by (37) and (38).
The equation therefore can be satisfied by some value of p, which fact verifies our
assumption as to the nature of the disturbance in this case. On simplification, the
equation becomes

P*+ 2pn ;37:;%2 + {n2 + 31; + (x + —i~> —Eg—} <87T’; %2)2 =0 . . (42)

Py

If m = n = 0, this equation does not hold. In this case the equation to the
surface is & = b (1 4 Be?"). Now, from (35) the force on the surface of the tore
k=10bis

F? E?
8r — 32r%aip?

{1 4 2b (2L — 3) cos v}.

Putting therefore b 4 bBe? in place of b, the force becomes

e
3273a4h?

{14 2b (2L" — 8) cos v — 2Be?'}.

Equating this to the pressure, we obtain

1 1 E ( w \2
2 - _— ————
p + < A A 7TPa,2M2> \87ra252> -_— O . N . . . . (43).

14. Substituting in (42) and (43) the values found in (24), (26), (27) for X\, we
have as equations for p ;
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OF THE PERIODS OF A HOLLOW VORTEX RING. 619

if m 1s finite and % not zero,

9 ) . K2 o\ .
PP 2pngn + n(n — 1) {1 +;;2‘—2#—2} <§7—T~L£é-b2> =0. . . (44);

if m is finite and n zero,
Ao T e () - - (9

if m and n are both zero,

if m is large, whatever n may be,

2mbK,’ (2mb)
2 . g y 2T \2WD)
P 2pn 8mrath® + [n + K, (2mbd)

4 (2K @ub)Y 4 (K, @nt)) B bV,
2mbK, (2mb) K, (2mb) mpatu® | \8ma?t?) — ~ °

(47).

The values of p given by (45) and (46) are always real, but those given by (44) and
(47) are imaginary for sufficiently large values of n. Taking (44), if p is to be real,
we must have n — (n? — n) ;r_p%:ﬁ positive. If E?/mpa’u® = (L' - §) /(L' — $), the
condition that V = 0, n must therefore not be greater than 1 for stability, so that all
the fluted vibrations of the stationary vortex are unstable.

Thus the presence of an electric charge on the vortex makes it unstable, however
small the charge may be. The modification of the vortex-atom theory of matter
here considered is therefore not admissible unless some alteration in the hypothesis
be made which will convert the instability of the vortex into stability.

MDCCCXCV.— A 41
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